Search form

TitleClasses of dendritic information processing.
Publication TypeJournal Article
Year of Publication2019
AuthorsPayeur, Alexandre, Jean-Claude Béïque, and Richard Naud
JournalCurr Opin Neurobiol
Volume58
Pagination78-85
Date Published2019 Aug 13
ISSN1873-6882
Abstract

Dendrites are much more than passive neuronal components. Mounting experimental evidence and decades of computational work have decisively shown that dendrites leverage a host of nonlinear biophysical phenomena and actively participate in sophisticated computations, at the level of the single neuron and at the level of the network. However, a coherent view of their processing power is still lacking and dendrites are largely neglected in neural network models. Here, we describe four classes of dendritic information processing and delineate their implications at the algorithmic level. We propose that beyond the well-known spatiotemporal filtering of their inputs, dendrites are capable of selecting, routing and multiplexing information. By separating dendritic processing from axonal outputs, neuron networks gain a degree of freedom with implications for perception and learning.

DOI10.1016/j.conb.2019.07.006
Alternate JournalCurr. Opin. Neurobiol.
PubMed ID31419712