Image credit: Francine Nault
Publication choisies FCOV
Publications récentes utilisant des outils développés par la FCOV
- S. M. Cain et al., “Hyperexcitable superior colliculus and fatal brainstem spreading depolarization in a model of sudden unexpected death in epilepsy,” Brain Communications, 2022, doi: 10.1093/braincomms/fcac006.
- B. S. Bono, N. K. K. Ly, P. A. Miller, J. Williams‐Ikhenoba, Y. Dumiaty, and M. J. Chee, “Spatial distribution of beta‐klotho mRNA in the mouse hypothalamus, hippocampal region, subiculum, and amygdala,” Journal of Comparative Neurology, 2022, doi: 10.1002/cne.25306.
- M. Bérard et al., “A light-inducible protein clustering system for in vivo analysis of α-synuclein aggregation in Parkinson disease,” PLoS Biology, vol. 20, no. 3, p. e3001578, 2022, doi: 10.1371/journal.pbio.3001578.
- G. P. Shelkar, J. Liu, and S. M. Dravid, “Astrocytic NMDA receptors in the basolateral amygdala contribute to facilitation of fear extinction,” International Journal of Neuropsychopharmacology, pp. pyab055-, 2021, doi: 10.1093/ijnp/pyab055.
- A. Servonnet, P.-P. Rompré, and A.-N. Samaha, “Optogenetic activation of basolateral amygdala projections to nucleus accumbens core promotes cue-induced expectation of reward but not instrumental pursuit of cues,” bioRxiv, p. 2021.10.20.465037, 2021, doi: 10.1101/2021.10.20.465037.
- P.-L. Rochon, C. Theriault, A. G. R. Olguin, and A. Krishnaswamy, “The cell adhesion molecule Sdk1 shapes assembly of a retinal circuit that detects localized edges,” eLife, vol. 10, p. e70870, 2021, doi: 10.7554/elife.70870.
- Y. Nasu et al., “A genetically encoded fluorescent biosensor for extracellular L-lactate,” 2021, doi: 10.1101/2021.03.05.434048.
- E. Bourinet, M. Martin, D. Huzard, F. Jeanneteau, P.-F. Mery, and A. François, “The impact of C-Tactile Low threshold mechanoreceptors on affective touch and social interactions in mice,” bioRxiv, p. 2021.01.13.426492, 2021, doi: 10.1101/2021.01.13.426492.
- G. Bilodeau et al., “A Wireless Electro-Optic Platform for Multimodal Electrophysiology and Optogenetics in Freely Moving Rodents,” Frontiers in Neuroscience, vol. 15, p. 718478, 2021, doi: 10.3389/fnins.2021.718478.
- L. Tenorio-Lopes, S. Fournier, M. S. Henry, F. Bretzner, and R. Kinkead, “Disruption of estradiol regulation of orexin neurons: a novel mechanism in excessive ventilatory response to CO2 inhalation in a female rat model of panic disorder,” Transl Psychiatry, vol. 10, no. 1, p. 394, Nov. 2020, doi: 10.1038/s41398-020-01076-x.
- Y. Shen, R. E. Campbell, D. C. Côté, and M.-E. Paquet, “Challenges for Therapeutic Applications of Opsin-Based Optogenetic Tools in Humans,” Frontiers in Neural Circuits, vol. 14, p. 41, 2020, doi: 10.3389/fncir.2020.00041.
- B. Sharif, A. R. Ase, A. Ribeiro-da-Silva, and P. Séguéla, “Differential Coding of Itch and Pain by a Subpopulation of Primary Afferent Neurons,” Neuron, vol. 106, no. 6, pp. 940-951.e4, 2020, doi: 10.1016/j.neuron.2020.03.021.
- K. Servick, “Controlling monkey brains with light could get easier thanks to open data project Optogenetic tools refined in rodents have been tricky to use in nonhuman primates,” Science, 2020, doi: doi: 10.1126/science.abf4696.
- C. Salesse et al., “Opposite Control of Excitatory and Inhibitory Synapse Formation by Slitrk2 and Slitrk5 on Dopamine Neurons Modulates Hyperactivity Behavior,” Cell Reports, vol. 30, no. 7, pp. 2374-2386.e5, 2020, doi: 10.1016/j.celrep.2020.01.084.
- M. A. K. Sagar, J. N. Ouellette, K. P. Cheng, J. C. Williams, J. J. Watters, and K. W. Eliceiri, “Microglia activation visualization via fluorescence lifetime imaging microscopy of intrinsically fluorescent metabolic cofactors,” Neurophotonics, vol. 7, no. 03, p. 1, 2020, doi: 10.1117/1.nph.7.3.035003.
- T. Patriarchi et al., “An expanded palette of dopamine sensors for multiplex imaging in vivo,” Nature Methods, vol. 17, no. 11, pp. 1147–1155, 2020, doi: 10.1038/s41592-020-0936-3.
- C. S. Khademullah et al., “Cortical interneuron-mediated inhibition delays the onset of amyotrophic lateral sclerosis,” Brain, vol. 143, no. 3, pp. 800–810, 2020, doi: 10.1093/brain/awaa034.
- F. Cao et al., “Neuroligin 2 regulates absence seizures and behavioral arrests through GABAergic transmission within the thalamocortical circuitry,” Nature Communications, vol. 11, no. 1, p. 3744, 2020, doi: 10.1038/s41467-020-17560-3.
- O. Ayad et al., “In vitro differentiation of W8B2+ human cardiac stem cells: gene expression of ionic channels and spontaneous calcium activity,” Cellular & Molecular Biology Letters, vol. 25, no. 1, p. 50, 2020, doi: 10.1186/s11658-020-00242-9.
- D. Agudelo et al., “Versatile and robust genome editing with Streptococcus thermophilus CRISPR1-Cas9,” Genome Research, vol. 30, no. 1, pp. 107–117, 2020, doi: 10.1101/gr.255414.119.
- A. K. Yang, J. A. Mendoza, C. K. Lafferty, F. Lacroix, and J. P. Britt, “Hippocampal Input to the Nucleus Accumbens Shell Enhances Food Palatability,” Biological Psychiatry, vol. 87, no. 7, pp. 597–608, 2019, doi: 10.1016/j.biopsych.2019.09.007.
- Y. Qian et al., “A genetically encoded near-infrared fluorescent calcium ion indicator,” Nature Publishing Group, vol. 16, no. 2, pp. 1–12, Jan. 2019, doi: 10.1038/s41592-018-0294-6.
- H. Petitjean et al., “Recruitment of Spinoparabrachial Neurons by Dorsal Horn Calretinin Neurons,” CellReports, vol. 28, no. 6, pp. 1429-1438.e4, Aug. 2019, doi: 10.1016/j.celrep.2019.07.048.
- M. Mouchiroud et al., “Hepatokine TSK does not affect brown fat thermogenic capacity, body weight gain, and glucose homeostasis,” Molecular Metabolism, vol. 30, pp. 184–191, 2019, doi: 10.1016/j.molmet.2019.09.014.
- N. J. Michelson, M. P. Vanni, and T. H. Murphy, “Comparison between transgenic and AAV-PHP.eB-mediated expression of GCaMP6s using in vivo wide-field functional imaging of brain activity,” Neurophotonics, vol. 6, no. 02, p. 1, 2019, doi: 10.1117/1.nph.6.2.025014.
- J. A. Mendoza, C. K. Lafferty, A. K. Yang, and J. P. Britt, “Cue-Evoked Dopamine Neuron Activity Helps Maintain but Does Not Encode Expected Value,” Cell Reports, vol. 29, no. 6, pp. 1429-1437.e3, 2019, doi: 10.1016/j.celrep.2019.09.077.
- J. Liu, G. P. Shelkar, F. Zhao, R. P. Clausen, and S. M. Dravid, “Modulation of Burst Firing of Neurons in Nucleus Reticularis of the Thalamus by GluN2C-Containing NMDA Receptors,” Molecular Pharmacology, vol. 96, no. 2, pp. 193–203, 2019, doi: 10.1124/mol.119.116780.
- D. Agudelo et al., “Versatile and robust genome editing with Streptococcus thermophilus CRISPR1-Cas9,” bioRxiv, p. 321208, 2019, doi: 10.1101/321208.
- N. Josset, M. Roussel, M. Lemieux, D. Lafrance-Zoubga, A. Rastqar, and F. Bretzner, “Distinct Contributions of Mesencephalic Locomotor Region Nuclei to Locomotor Control in the Freely Behaving Mouse,” Current Biology, vol. 28, no. 6, pp. 884-901.e3, Mar. 2018, doi: 10.1016/j.cub.2018.02.007.
- P. L. W. Colmers and J. S. Bains, “Presynaptic mGluRs Control the Duration of Endocannabinoid-Mediated DSI,” Journal of Neuroscience, vol. 38, no. 49, pp. 10444–10453, 2018, doi: 10.1523/jneurosci.1097-18.2018.
- K. T. Barrett, A. Roy, K. B. Rivard, R. J. A. Wilson, and M. H. Scantlebury, “Vagal TRPV1 activation exacerbates thermal hyperpnea and increases susceptibility to experimental febrile seizures in immature rats,” Neurobiology of Disease, vol. 119, pp. 172–189, Nov. 2018, doi: 10.1016/j.nbd.2018.08.004.
- A. Chabrat et al., “Transcriptional repression of Plxnc1 by Lmx1a and Lmx1b directs topographic dopaminergic circuit formation.,” Nature Communications, vol. 8, no. 1, p. 933, Oct. 2017, doi: 10.1038/s41467-017-01042-0.
- H. Beaudry, I. Daou, A. R. Ase, A. Ribeiro-da-Silva, and P. Séguéla, “Distinct behavioral responses evoked by selective optogenetic stimulation of the major TRPV1+ and MrgD+ subsets of C-fibers.,” Pain, vol. 158, no. 12, pp. 2329–2339, Dec. 2017, doi: 10.1097/j.pain.0000000000001016.
- H. Doucet-Beaupré et al., “Lmx1a and Lmx1b regulate mitochondrial functions and survival of adult midbrain dopaminergic neurons.,” Proceedings of the National Academy of Sciences of the United States of America, vol. 113, no. 30, pp. E4387-96, Jul. 2016, doi: 10.1073/pnas.1520387113.
- P. Chapdelaine et al., “Development of an AAV9 coding for a 3XFLAG-TALEfrat#8-VP64 able to increase in vivo the human frataxin in YG8R mice.,” Gene therapy, vol. 23, no. 7, pp. 606–614, Jul. 2016, doi: 10.1038/gt.2016.36.
- H. Petitjean et al., “Dorsal Horn Parvalbumin Neurons Are Gate-Keepers of Touch-Evoked Pain after Nerve Injury.,” CellReports, vol. 13, no. 6, pp. 1246–1257, Nov. 2015, doi: 10.1016/j.celrep.2015.09.080.