Search form

TitleOpposite Control of Excitatory and Inhibitory Synapse Formation by Slitrk2 and Slitrk5 on Dopamine Neurons Modulates Hyperactivity Behavior.
Publication TypeJournal Article
Year of Publication2020
AuthorsSalesse, Charleen, Julien Charest, Hélène Doucet-Beaupré, Anne-Marie Castonguay, Simon Labrecque, Paul De Koninck, and Martin Lévesque
JournalCell Rep
Date Published2020 02 18

The neurodevelopmental origin of hyperactivity disorder has been suggested to involve the dopaminergic system, but the underlying mechanisms are still unknown. Here, transcription factors Lmx1a and Lmx1b are shown to be essential for midbrain dopaminergic (mDA) neuron excitatory synaptic inputs and dendritic development. Strikingly, conditional knockout (cKO) of Lmx1a/b in postmitotic mDA neurons results in marked hyperactivity. In seeking Lmx1a/b target genes, we identify positively regulated Slitrk2 and negatively regulated Slitrk5. These two synaptic adhesion proteins promote excitatory and inhibitory synapses on mDA neurons, respectively. Knocking down Slitrk2 reproduces some of the Lmx1a/b cKO cellular and behavioral phenotypes, whereas Slitrk5 knockdown has opposite effects. The hyperactivity caused by this imbalance in excitatory/inhibitory synaptic inputs on dopamine neurons is reproduced by chronically inhibiting the ventral tegmental area during development using pharmacogenetics. Our study shows that alterations in developing dopaminergic circuits strongly impact locomotor activity, shedding light on mechanisms causing hyperactivity behaviors.

Alternate JournalCell Rep
PubMed ID32075770