Search form

TitlePolychromatic digital holographic microscopy: a quasicoherent-noise-free imaging technique to explore the connectivity of living neuronal networks.
Publication TypeJournal Article
Year of Publication2020
AuthorsLarivière-Loiselle, Céline, Erik Bélanger, and Pierre Marquet
JournalNeurophotonics
Volume7
Issue4
Pagination040501
Date Published2020 Oct
ISSN2329-423X
Abstract

Over the past decade, laser-based digital holographic microscopy (DHM), an important approach in the field of quantitative-phase imaging techniques, has become a significant label-free modality for live-cell imaging and used particularly in cellular neuroscience. However, coherent noise remains a major drawback for DHM, significantly limiting the possibility to visualize neuronal processes and precluding important studies on neuronal connectivity. : The goal is to develop a DHM technique able to sharply visualize thin neuronal processes. : By combining a wavelength-tunable light source with the advantages of hologram numerical reconstruction of DHM, an approach called polychromatic DHM (P-DHM), providing OPD images with drastically decreased coherent noise, was developed. : When applied to cultured neuronal networks with an air microscope objective ( , 0.8 NA), P-DHM shows a coherent noise level typically corresponding to 1 nm at the single-pixel scale, in agreement with the -law, allowing to readily visualize the -wide thin neuronal processes with a signal-to-noise ratio of . : Therefore, P-DHM represents a very promising label-free technique to study neuronal connectivity and its development, including neurite outgrowth, elongation, and branching.

DOI10.1117/1.NPh.7.4.040501
Alternate JournalNeurophotonics
PubMed ID33094123
PubMed Central IDPMC7567399