Search form

TitleA time-stamp mechanism may provide temporal information necessary for egocentric to allocentric spatial transformations.
Publication TypeJournal Article
Year of Publication2018
AuthorsWallach, Avner, Erik Harvey-Girard, James Jaeyoon Jun, Andre Longtin, and Len Maler
Date Published2018 11 22

Learning the spatial organization of the environment is essential for most animals' survival. This requires the animal to derive allocentric spatial information from egocentric sensory and motor experience. The neural mechanisms underlying this transformation are mostly unknown. We addressed this problem in electric fish, which can precisely navigate in complete darkness and whose brain circuitry is relatively simple. We conducted the first neural recordings in the , the thalamic region exclusively connecting the with the spatial learning circuits in the . While tectal topographic information was mostly eliminated in preglomerular neurons, the time-intervals between object encounters were precisely encoded. We show that this reliable temporal information, combined with a speed signal, can permit accurate estimation of the distance between encounters, a necessary component of path-integration that enables computing allocentric spatial relations. Our results suggest that similar mechanisms are involved in sequential spatial learning in all vertebrates.

Alternate JournalElife
PubMed ID30465523
PubMed Central IDPMC6264071
Grant List49510 / / CIHR / Canada